The microbial nitrogen cycle

نویسندگان

  • Bess B. Ward
  • Marlene M. Jensen
چکیده

Nitrogen (N) is an essential element in biological systems and one that often limits production in both aquatic and terrestrial systems. Due to its requirement in biological macromolecules, its acquisition and cycling have the potential to structure microbial communities, as well as to control productivity on the ecosystem scale. In addition, its versatile redox chemistry is the basis of complex biogeochemical transformations that control the inventory of fixed (biologically available) N in local environments, on a global scale and over geological time. Although many of the pathways in the microbial nitrogen cycle were described more than a century ago, additional fundamental pathways have been discovered only recently. These findings imply that we still have much to learn about the microbial nitrogen cycle, the organisms responsible for it and their interactions in natural and human environments. Progress in N cycle research has been facilitated by recent rapid technological advances, especially in genomics and isotopic approaches. The papers in this issue reflect current research focus on N loss and input processes. The papers are ordered by topic beginning with N fixation, the only biological process that can increase the inventory of fixed N, Knapp (2012) reviewed the literature on the sensitivity of N fixation to dissolved inorganic N and found that neither cultured cyanobacteria nor natural assemblages are completely inhibited by the presence of inorganic N substrates. Knapp was cautious about recent reports of N fixation in subeuphotic mesopelagic waters but concluded that N fixation does occur in the presence of fixed N and in geographic ranges not usually associated with cyanobacteria, which may substantially change our understanding of the global marine N budget. Turk-Kubo et al. (2012) addressed another aspect of the regulation of N fixation and found that different types of N fixers respond differently and variably to Fe or P additions. Both N fixation rates and nifH gene expression indicate complex regional and taxonomic sensitivities to micronutrient limitation. Next we include a series of papers about nitrification, a process which does not directly affect the fixed N inventory, but which links mineralization to the N loss processes by producing oxidized forms of N that can then be used as respiratory substrates. Nitrification has been the subject of increasing research interest since the discovery a decade ago that archaea were involved in ammonium oxidation. A large body of literature has since developed documenting the diversity, abundance and activity of ammonia oxidizing bacteria and archaea (AOB and AOA). For this collection, Casciotti and Buchwald (2012) reviewed knowledge about nitrification gained from the use of N and O isotopes. They found consistent support for the occurrence of nitrification in the euphotic zone, and strong evidence for nitrite reoxidation in suboxic waters. Beman et al. (2012) measured distributions of AOB and AOA in marine sediments and found evidence of their presence as well as active ammonium oxidation in sediments where oxygen was essentially undetectable. They suggest that bioturbation supplies sufficient oxygen intermittently to maintain nitrification even below the typical redox gradient in surficial sediments. Peng et al. (2013) investigated the composition of AOA assemblages in two oxygen minimum zone (OMZ) environments. Although AOA are found in abundance even in waters that contain essentially zero oxygen, active nitrification is not detected there, so Peng et al. (2013) hypothesized that AOA assemblages in oxic waters would differ from those in anoxic waters. Perhaps surprisingly, they found that AOA communities in the OMZ did not differ significantly from those in the overlying surface layer, but they found that biogeography was a significant factor in explaining community composition, as assemblages from the two OMZs (Arabian Sea and Eastern Tropical South Pacific) were significantly different. Bouskill et al. (2012) used trait based modeling to simulate and predict nitrifier community composition and nitrification rates. They found that the relatively simple metabolism of nitrifiers lends itself to such modeling, potentially allowing predictions of the response of nitrification to climate change as reflected in changing environmental parameters such as temperature, pH and substrate availability. The next topic in the collection deals with the processes by which fixed N is lost from marine ecosystems. Low oxygen environments are of particular interest for nitrogen transformations because they are the sites of fixed N loss via denitrification and anammox. Francis et al. (2013) report on a large sequencing study in sediments of Chesapeake Bay. They found significant geographical patterns in the diversity and composition of denitrifying communities along the estuarine gradient and found that the most abundant types in the environment are only distantly related to anything in culture. Bowles et al. (2012) reported on processes controlling denitrification and the diversity of denitrifying bacteria in the sediments of Guaymas Basin. They found high rates

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microbial Nitrogen-Cycle Gene Abundance in Soil of Cropland Abandoned for Different Periods

In Inner Mongolia, steppe grasslands face desertification or degradation because of human overuse and abandonment after inappropriate agricultural management. The soils in these abandoned croplands exist in heterogeneous environments characterized by widely fluctuating microbial growth. Quantitative polymerase chain reaction analysis of microbial genes encoding proteins involved in the nitrogen...

متن کامل

Lipids as paleomarkers to constrain the marine nitrogen cycle

Global climate is, in part, regulated by the effect of microbial processes on biogeochemical cycling. The nitrogen cycle, in particular, is driven by microorganisms responsible for the fixation and loss of nitrogen, and the reduction-oxidation transformations of bio-available nitrogen. Within marine systems, nitrogen availability is often the limiting factor in the growth of autotrophic organis...

متن کامل

Metagenomic Profiling of a Microbial Assemblage Associated with the California Mussel: A Node in Networks of Carbon and Nitrogen Cycling

Mussels are conspicuous and often abundant members of rocky shores and may constitute an important site for the nitrogen cycle due to their feeding and excretion activities. We used shotgun metagenomics of the microbial community associated with the surface of mussels (Mytilus californianus) on Tatoosh Island in Washington state to test whether there is a nitrogen-based microbial assemblage ass...

متن کامل

Bioturbation: impact on the marine nitrogen cycle.

Sediments play a key role in the marine nitrogen cycle and can act either as a source or a sink of biologically available (fixed) nitrogen. This cycling is driven by a number of microbial remineralization reactions, many of which occur across the oxic/anoxic interface near the sediment surface. The presence and activity of large burrowing macrofauna (bioturbators) in the sediment can significan...

متن کامل

Nitrate and Nitrite: Sources, Impact on Human Health and Reduction of Nitrate Accumulation in Agricultural Products Using Bio-fertilizers

Nitrate with the chemical formula NO3- is one of the forms of nitrogen in the environment that plays an important role in the nitrogen cycle. Vegetables, water and meat are important sources of nitrate. Nitrate is made in the body through the arginine-NO pathway and enters the body through various sources. Oral nitrate is converted to nitrite (NO2-) by bacteria when it enters the mouth, and nit...

متن کامل

The evolution and future of Earth's nitrogen cycle.

Atmospheric reactions and slow geological processes controlled Earth's earliest nitrogen cycle, and by ~2.7 billion years ago, a linked suite of microbial processes evolved to form the modern nitrogen cycle with robust natural feedbacks and controls. Over the past century, however, the development of new agricultural practices to satisfy a growing global demand for food has drastically disrupte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014